#### СТАТЬИ

УДК 631.416:504.5(575.1)

# ИЗМЕНЕНИЕ ЭКОЛОГИЧЕСКОГО СОСТОЯНИЯ ПОЧВ ПОД ВОЗДЕЙСТВИЕМ ТЯЖЕЛЫХ МЕТАЛЛОВ (НА ПРИМЕРЕ САРИАСИЙСКОГО, УЗУНСКОГО, ДЕНАУСКОГО РАЙОНОВ СУРХАНДАРЬИНСКОЙ ОБЛАСТИ РЕСПУБЛИКИ УЗБЕКИСТАН)

¹Жобборов Б.Т., ²Абдушукурова М.Р., ¹Шакаров Ф.Б.

<sup>1</sup>Национальный университет Узбекистана имени Мирзо Улугбека, Ташкент, e-mail: bakhrom.jobborov@mail.ru;

<sup>2</sup>Денауский институт предпринимательства и педагогики, Денау

В данной статье изучено трансграничное воздействие вредных химических соединений, образующихся в результате техногенной деятельности Таджикской алюминиевой компании, расположенной в Республике Таджикистан, на почвы Сарыасийского, Узунского и Денауского районов Сурхандарьинской области Республики Узбекистан. Были отобраны образцы почвы с данной территории и проведены лабораторные анализы. По полученным результатам было установлено наличие в составе почвы таких тяжелых металлов, как ванадий (V), кобальт (Со), цинк (Zn), мышьяк (As), кадмий (Сd), сурьма (Sb) и свинец (Pb). Согласно исследованию концентрации указанных металлов в ряде случаев превышают предельно допустимые нормы. Степень загрязнения изменяется в зависимости от близости к Таджикской алюминиевой компании: по мере увеличения расстояния концентрация металлов снижается. В частности, самые высокие показатели зафиксированы в образцах, взятых на расстоянии 16 км от предприятия, тогда как на расстоянии 38 км уровень загрязнения значительно снижен. Эти факты свидетельствуют о негативном воздействии деятельности Таджикской алюминиевой компании на окружающую среду региона. Кроме того, результаты данного исследования служат важной научной основой для оценки экологического состояния почвенных ресурсов региона, разработки мер экологической безопасности и формирования стратегии планового управления производственными отходами.

Ключевые слова: почва, экология, завод, предприятие, компания, загрязнение, территория, химические элементы, промышленность, атмосфера, предельно допустимая концентрация, площадь, отходы

### CHANGES IN THE ECOLOGICAL STATE OF SOILS UNDER THE INFLUENCE OF HEAVY METALS (ON THE EXAMPLE OF SARIASI, UZUN, DENAU DISTRICTS OF THE SURKHAN-DARYA REGION OF THE REPUBLIC OF UZBEKISTAN)

<sup>1</sup>Zhobborov B.T., <sup>2</sup>Abdushukurova M.R., <sup>1</sup>Shakarov F.B.

National University of Uzbekistan named after Mirza Ulugbek, Tashkent, e-mail: bakhrom.jobborov@mail.ru; Denau Institute of Entrepreneurship and Pedagogy, Denau

This article presents a scientific study of the transboundary impact of harmful chemical compounds resulting from the technogenic activity of the Tajik Aluminium Company, located in the Republic of Tajikistan, on the soils of Sariosiyo, Uzun, and Denov districts of the Surkhandarya region in the Republic of Uzbekistan. Soil samples were collected from the mentioned areas and analyzed under laboratory conditions. The results revealed the presence of heavy metals such as vanadium (V), cobalt (Co), zinc (Zn), arsenic (As), cadmium (Cd), antimony (Sb), and lead (Pb) in the soil composition. According to the study, the concentrations of these metals exceeded the permissible threshold levels. The degree of contamination varied depending on the proximity to the Tajik Aluminium Plant – the closer the distance, the higher the concentrations. Specifically, the highest metal concentrations were recorded in samples taken 16 km from the company, while significantly lower concentrations were observed at a distance of 38 km. These findings indicate the negative regional environmental impact of the Tajik Aluminium Company's activities. Furthermore, the results of this study serve as an important scientific basis for assessing the ecological condition of soil resources in the region, guiding environmental safety measures, and shaping a strategy for the planned management of industrial waste.

Keywords: soil, ecology, plant, enterprise, company, pollution, territory, chemical elements, industry, atmosphere, maximum permissible concentration, area, waste

#### Введение

В настоящее время деградация почв вследствие промышленной деятельности становится все более распространенным явлением в глобальном масштабе. Поэтому комплексное изучение состояния загрязнения почв, выявление загрязняющих факторов и источников является одной из акту-

альных задач обеспечения экологической устойчивости, поскольку почва является ключевым компонентом биосферы и важным ресурсом, обеспечивающим питание всех живых организмов.

В мире проведено множество исследований по изучению и предотвращению загрязнения окружающей среды и почв про-

мышленными предприятиями. В частности, были проведены исследования по изучению состояния загрязнения почв, вызванного техногенными факторами, такими как горнодобывающая промышленность и металлургия, тепловые электростанции и заводы по переработке металла, в промышленно развитых странах – России, Китае, Японии, Украине и Корее. Поэтому важно оценивать уровень загрязнения почв вокруг промышленных объектов, выявлять основные источники и факторы загрязнения, оценивать техногенные изменения почв и разрабатывать соответствующие технологии рекультивации. В районах с высоким уровнем индустриализации наблюдаются высокие концентрации тяжелых металлов в атмосферном воздухе. Такие сложные вредные вещества, в частности аэрозольные частицы, через дыхательную систему человека проникают в ткани легких и далее в кровеносную систему. Это приводит к ряду биологических нарушений в организме, создавая основу для развития различных соматических и хронических заболеваний [1]. На этом основании можно сделать вывод, что тяжелые металлы и связанные с ними токсичные элементы поглощаются растениями через почвенную среду, а затем через пищевую цепь воздействуют на организм человека, представляя угрозу его здоровью [2]. В связи с этим загрязнение почв тяжелыми металлами считается одной из наиболее актуальных проблем среди современных экологических угроз [3].

Оксиды тяжелых металлов, выбрасываемые промышленными предприятиями Краснодарского края Российской Федерации, оказывают негативное воздействие не только на почвенную экосистему, но и на общее состояние здоровья человека. Согласно статистике Всемирной организации здравоохранения (ВОЗ), проблемы со здоровьем среди населения мира, обусловленные неблагоприятными факторами окружающей среды, составляют в среднем от 25 до 33 % [4].

Горнодобывающая промышленность в процессе своей деятельности оказывает прямое и косвенное негативное воздействие на все основные компоненты природной среды – атмосферу, гидросферу, биосферу и литосферу. В частности, техногенные отходы, образующиеся при добыче и переработке полезных ископаемых, приводят к морфологическим и структурным изменениям природных ландшафтов. Кроме того, в результате интенсивной горнодобывающей деятельности нарушаются физико-химические свойства почвенного покрова, снижается численность полезных микроорганизмов, а образующиеся вредные элементы накапливаются в тканях доминирующих на данной территории видов растений через их корни и листья. Это, в свою очередь, серьезно подрывает экологическую устойчивость почвы и приводит к резкому снижению флористического разнообразия [5].

В промышленно развитых странах, таких как США, Германия, Китай и Япония, в результате открытой добычи и металлургической переработки полезных ископаемых в поверхностном слое почвы на глубине 0–20 см обнаружены высокие концентрации таких элементов, как Pb, Zn, Ni, Mn, Ba, As, Hg, Mo, Cr, Sr, V, Co, Cu, F, Al, Li, Be, Ag, Ti, Cd, Se, Sn, Tl, Bi, Na, K, S, Cl. Наблюдается значительное увеличение содержания тяжелых металлов и других вредных компонентов, особенно в районах, близких к промышленным объектам [6].

В результате научно-практических исследований, проведенных в Китае, была оценена степень загрязнения тяжелыми металлами педоэкосистем, сформированных под воздействием промышленной деятельности. В ходе исследований количественное содержание тяжелых металлов было определено в пробах почв, отобранных на 402 промышленных объектах [7]. Кроме того, в почвах промышленных зон обнаружено наличие потенциально токсичных элементов, таких как Pb, Zn, Tl, Cd, Cu, As, Ag, Co, Cr и Ni, причем содержание некоторых компонентов превышало предельно допустимые значения (ПДК – предельно допустимые концентрации) [8]. В почвах, сформированных под влиянием горнодобывающей, металлургической и металлообрабатывающей промышленности в западных регионах России, отмечено высокое содержание тяжелых металлов. Это привело к значительному сокращению численности полезных микробных сообществ в почве и значительному снижению агроэкологической продуктивности [9]. При изучении уровня антропогенного воздействия на эдафические слои и экосистему в целом вокруг крупного фосфатного химического промышленного центра в Китае было установлено, что это воздействие было существенно распределено в радиусе до 2500 м. В результате деятельности этого промышленного комплекса состав почвы был загрязнен не только фторидами, но и токсичными элементами тяжелых металлов, такими как свинец [10].

В ряде научных исследований были глубоко проанализированы экологические проблемы, возникающие в окружающей среде, и основной причиной их является увеличение вредных химических форм органического вещества. В то же время одним из негативных воздействий техногенных

производственных объектов в микрополитических районах на биофизическую среду было определено снижение плодородия почвы из-за попадания вредных химических компонентов в почвенные ресурсы [11]. Микропластиковые отходы являются одним из негативных воздействий современных производственных предприятий, которые считаются одним из основных источников загрязнения, ухудшающего физические свойства почвы, такие как воздухо- и водопроницаемость [12]. Для оценки почвенных ресурсов вокруг нескольких промышленных объектов, расположенных в городе Линьань, Китай, было изучено 188 образцов почвы. Результаты исследования показали, что количество экологически опасных элементов, таких как Cd, Cu, Zn, Pb, Ni и Cr, в почве было выше нормы, и было определено, что они напрямую связаны с промышленной деятельностью. Также было замечено, что высокие концентрации этих тяжелых металлов приводят к изменению морфологической структуры растений [13].

Кроме того, многие научные исследования зафиксировали случаи накопления тяжелых металлов в культурных и дикорастущих растениях, произрастающих вблизи промышленных объектов. В частности, было убедительно доказано, что такие металлы, как Ag, Al, As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sb, Se, Sn, Tl, V, Zn, поглощаются листьями и зернами кукурузы [14]. Влияние на почвенную среду вредных химических веществ, выбрасываемых промышленными предприятиями, широко изучалось. Установлено, что эти отходы оказывают неблагоприятное воздействие на организмы через почву. Кроме того, наблюдалась циркуляция тяжелых металлов и других вредных химических соединений через почву [15].

Ряд ученых отметили изменение показателя рН в почвах, расположенных вблизи промышленных и производственных предприятий, в сторону кислотности. В то же время отходы в почве стали причиной снижения способности растений усваивать минеральные удобрения, такие как азот, фосфор и калий [16].

**Цель исследования** — анализ изменений экологического состояния почв Сариасийского, Узунского и Денауского районов Сурхандарьинской области под влиянием тяжелых металлов.

#### Материалы и методы исследования

В ходе полевых работ были выполнены следующие работы:

- сбор общих данных о почвах исследуемой территории;

- выявление источников и факторов загрязнения почв исследуемой территории;
- отбор проб почв для лабораторного изучения их химического состояния;
- определение содержания тяжелых металлов в почве. Масс-спектральный анализ проводился в Центральной лаборатории АО «Узбекгеологоразведочная компания» Министерства горного дела и геологии Республики Узбекистан по методике выполнения измерений (МВИ) УзОУ 0677:2015 (МВИ № 499-АЭМ/МС), разработанной в России и утвержденной в Узбекистане.

## Результаты исследования и их обсуждение

В настоящее время в результате бурного развития промышленности и расширения интенсивной сельскохозяйственной деятельности в глобальном масштабе в почвенной среде накапливаются различные загрязняющие вещества, в частности тяжелые металлы. Это приводит к существенным изменениям в структуре и функционировании агроэкосистем и фитоценозов, способствуя возникновению глобальных экологических проблем. Поэтому одной из актуальных задач является оценка эколого-санитарного состояния системы «почва – растение», разработка биологических методов, направленных на снижение фитотоксичности почв, загрязненных тяжелыми металлами, ограничение миграции тяжелых металлов из почвы через растения, а также разработка научно обоснованных подходов, направленных на производство экологически безопасной сельскохозяйственной продукции.

Степень загрязнения, продолжительность и структурные особенности почв исследуемой территории анализировались с использованием комплексного подхода. Как было отмечено выше, в результате разнообразия загрязняющих факторов типы образующихся в составе почв химических элементов и их воздействие на почвенную систему существенно различались. Следы загрязнения, обнаруженные в почвенном слое, были связаны с различными химическими компонентами в зависимости от масштаба и характера воздействия, а в некоторых из них наблюдались случаи превышения предельно допустимых значений (ПДК). Результаты данного научного наблюдения подробно представлены в таблице. В данном исследовании изучалось воздействие Таджикской алюминиевой компании (ТАК) на типичные орошаемые и светлоокрашенные почвы, распространенные в Сариасийском, Узунском и Денауском районах Сурхандарьинской области, которые и были объектом исследования.

Химическое загрязнение типичных и светлых орошаемых почв Сариасийского, Узунского и Денауского районов Сурхандарьинской области

| Название    | Расстояние от Таджикской алюминиевой компании (ТаджАК) составля |                   |                   |                   |  |
|-------------|-----------------------------------------------------------------|-------------------|-------------------|-------------------|--|
| химического | КУ – 16 км                                                      | КС – 24 км        | КД – 30 км        | КД – 38 км        |  |
| элемента    | на глубине 0,5 см                                               | на глубине 0,5 см | на глубине 0,5 см | на глубине 0,5 см |  |
| Li          | 33,0                                                            | 34,0              | 31,0              | 28,0              |  |
| Be          | 1,90                                                            | 1,60              | 1,20              | 1,90              |  |
| В           | 16,0                                                            | 20,0              | 15,0              | 16,0              |  |
| Na          | 13000                                                           | 11000             | 10000             | 8000              |  |
| Mg          | 18000                                                           | 19000             | 18000             | 17000             |  |
| Al          | 65000                                                           | 62000             | 59000             | 57000             |  |
| P           | 780                                                             | 700               | 670               | 660               |  |
| K           | 19000                                                           | 17000             | 17000             | 16000             |  |
| Ca          | 84000                                                           | 93000             | 85000             | 110000            |  |
| Sc          | 12,0                                                            | 12,0              | 10,0              | 11,0              |  |
| Ti          | 2900                                                            | 2800              | 2500              | 2500              |  |
| V           | 180                                                             | 175,0             | 161,0             | 156,0             |  |
| Cr          | 65,0                                                            | 54,0              | 58,0              | 52,0              |  |
| Mn          | 600                                                             | 620               | 580               | 620               |  |
| Fe          | 30000                                                           | 31000             | 29000             | 31000             |  |
| Со          | 11,0                                                            | 13,0              | 7,0               | 4,0               |  |
| Ni          | 35,0                                                            | 37,0              | 35,0              | 33,0              |  |
| Cu          | 30,0                                                            | 32,0              | 44,0              | 33,0              |  |
| Zn          | 185                                                             | 150               | 123               | 108               |  |
| Ga          | 12,0                                                            | 13,0              | 12,0              | 13,0              |  |
| As          | 25,0                                                            | 16,0              | 5,0               | 3,0               |  |
| Se          | 4,00                                                            | 5,80              | 6,10              | 4,50              |  |
| Rb          | 91,0                                                            | 86,0              | 92,0              | 80,0              |  |
| Sr          | 330                                                             | 370               | 380               | 320               |  |
| Y           | 18,0                                                            | 17,0              | 17,0              | 15,0              |  |
| Zr          | 64,0                                                            | 75,0              | 69,0              | 63,0              |  |
| Nb          | 8,90                                                            | 10,0              | 8,90              | 8,00              |  |
| Mo          | 2,70                                                            | 3,80              | 3,90              | 5,50              |  |
| Ag          | 0,370                                                           | 0,390             | 0,360             | 0,430             |  |
| Cd          | 0,13                                                            | 0,25              | 0,16              | 0,11              |  |
| In          | 0,055                                                           | 0,072             | 0,72              | 0,055             |  |
| Sn          | 2,50                                                            | 2,10              | 2,70              | 2,30              |  |
| Sb          | 8,20                                                            | 7,40              | 5,30              | 1,90              |  |
| Te          | < 0,30                                                          | < 0,30            | < 0,30            | < 0,30            |  |
| Cs          | 6,10                                                            | 6,50              | 5,80              | 6,10              |  |
| Ba          | 480                                                             | 770               | 720               | 820               |  |
| La          | 27,0                                                            | 25,0              | 23,0              | 27,0              |  |
| Ce          | 56,0                                                            | 52,0              | 47,0              | 54,0              |  |
| Pr          | 6,90                                                            | 6,50              | 6,00              | 6,70              |  |
| Nd          | 26,0                                                            | 23,0              | 22,0              | 24,0              |  |
| Sm          | 5,50                                                            | 5,50              | 5,20              | 4,80              |  |
|             | ,                                                               |                   |                   |                   |  |
| Eu          | 1,00                                                            | 1,10              | 0,890             | 0,970             |  |

Окончание табл.

| Название                | Расстояние от Таджикской алюминиевой компании (ТаджАК) составляет км |                                 |                                 |                                 |  |
|-------------------------|----------------------------------------------------------------------|---------------------------------|---------------------------------|---------------------------------|--|
| химического<br>элемента | КУ – 16 км<br>на глубине 0,5 см                                      | КС – 24 км<br>на глубине 0,5 см | КД – 30 км<br>на глубине 0,5 см | КД – 38 км<br>на глубине 0,5 см |  |
| Gd                      | 4,50                                                                 | 4,70                            | 4,00                            | 4,30                            |  |
| Tb                      | 0,540                                                                | 0,570                           | 0,480                           | 0,490                           |  |
| Dy                      | 3,80                                                                 | 3,60                            | 3,50                            | 3,20                            |  |
| Но                      | 0,560                                                                | 0,550                           | 0,580                           | 0,520                           |  |
| Er                      | 2,10                                                                 | 1,70                            | 1,60                            | 1,60                            |  |
| Tm                      | 0,240                                                                | 0,260                           | 0,250                           | 0,200                           |  |
| Yb                      | 1,80                                                                 | 1,90                            | 1,70                            | 1,70                            |  |
| Lu                      | 0,220                                                                | 0,270                           | 0,260                           | 0,250                           |  |
| Hf                      | 2,00                                                                 | 2,10                            | 1,70                            | 1,70                            |  |
| Та                      | 0,800                                                                | 0,780                           | 0,660                           | 0,630                           |  |
| W                       | 2,00                                                                 | 2,40                            | 1,70                            | 1,90                            |  |
| Re                      | <0,01                                                                | 0,012                           | 0,0018                          | <0,01                           |  |
| Pt                      | < 0,05                                                               | <0,05                           | < 0,05                          | <0,05                           |  |
| Au                      | < 0,05                                                               | <0,05                           | < 0,05                          | <0,05                           |  |
| Tl                      | 0,510                                                                | 0,420                           | 0,430                           | 0,420                           |  |
| Pb                      | 44,0                                                                 | 35,0                            | 31,0                            | 29,0                            |  |
| Bi                      | 0,220                                                                | 0,290                           | 0,210                           | 0,260                           |  |
| Th                      | 9,80                                                                 | 9,70                            | 10,0                            | 9,90                            |  |
| U                       | 2,60                                                                 | 3,20                            | 2,80                            | 2,80                            |  |

В ходе исследований было установлено, что некоторые элементы в составе почвы увеличились от ПДК под влиянием различных химических соединений, поступающих с Таджикского алюминиевого завода. В частности, почва, взятая с расстояния 16 км от Таджикской алюминиевой компании, содержала V 180, Co 11,0, Zn 185, As 25,0, Cd 0,13, Sb 8,20, Pb 44,0; почва, взятая с расстояния 24 км от Таджикской алюминиевой компании, содержала V 175,0, Co 13,0, Zn 150, As 16,0, Cd 0,25, Sb 7,40, Pb 35,0; почва, взятая с расстояния 30 км от Таджикской алюминиевой компании, содержала V 161,0, Co 7,0, Zn 123, As 5,0, Cd 0,16, Sb 5,30, Pb 31,0; почва, взятая с расстояния 38 км от Таджикской алюминиевой компании, содержала V 156,0, Zn 108, As 3,0, Cd 0,11, и все вышеперечисленные химические элементы в составе почвы, распределенные на этих расстояниях, превышали предельно допустимые концентрации. В приведенной выше таблице наблюдается уменьшение содержания химических элементов в составе почвы по мере удаления от Таджикской алюминиевой компании. Это напрямую объясняется воздействием вредных химических соединений, выбрасываемых данным предприятием.

#### Заключение

Проведенные анализы выявили, что в результате деятельности Таджикской алюминиевой компании в окружающей среде, в частности на орошаемых почвах Сариасийского, Узунского и Денауского районов Сурхандарьинской области, обнаружено превышение предельно допустимых значений ряда тяжелых металлов и вредных химических элементов. В частности, такие элементы, как ванадий (V), кобальт (Co), цинк (Zn), сурьма (Sb), мышьяк (As), кадмий (Cd) и свинец (Pb), концентрируются в почве в высоких концентрациях, и наблюдается четкое уменьшение их количества по мере удаления от Таджикской алюминиевой компании. Это означает, что воздействие отходов, выбрасываемых в результате деятельности Таджикской алюминиевой компании, уменьшается пропорционально территориальному расстоянию. Это подтверждает, что вредные соединения, выбрасываемые предприятием, оказывают прямое и существенное воздействие на почвенную среду. Масштабное и устойчивое загрязнение может привести к нарушению биологических процессов в агроэкосистеме, фитоценозах и системе почва – растение, а также к снижению эколого-агрономического качества почв. Поэтому систематический мониторинг уровня загрязнения почв тяжелыми металлами в данном регионе, оценка изменений в фитосистемах и внедрение биологических, агротехнических и природоохранных мероприятий, направленных на снижение токсического воздействия, имеют большое научное и практическое значение.

#### Список литературы

- 1. Радомская В.И., Бородина Н.А. Оценка антропогенного загрязнения почвы урбанизированной территории на примере города Благовещенска // Геоэкология. инженерная геология, гидрогеология, геокриология. 2019. № 6. С. 79–93. DOI: 10.18799/24131830/2020/10/2850.
- 2. Adeleke B.O., Kinuthia J.M., Jonathan E. Oti. Impacts of MgO waste: GGBS formulations on the performance of a stabilised natural high sulphate bearing soil // Construction and Building Materials. 2022. Vol. 315. № 125745. P. 1–12. URL: https://pure.southwales.ac.uk/ws/portalfiles/portal/5844566 (дата обращения: 25.07.2025).
- 3. Ушакова Е.С., Караваева Т.И., Белкин П.А. Экологическое состояние почв промышленных территорий (на примере г. Березники, Пермский край): сравнение отечественных и зарубежных методов оценки // Известия Томского политехнического университета. Инжиниринг георесурсов. 2020. Т. 331. № 10. С. 58–70. DOI: 10.1016/j.conbuild-mat.2021.125745.
- 4. Liu Z., Fei Y., Shi H., Mo L., Qi J. Prediction of highrisk areas of soil heavy metal pollution with multiple factors on a large scale in industrial agglomeration areas // Science of the Total Environment. 2022. Vol. 808 151874. P. 1–12. DOI: 10.1016/j.scitotenv.2021.151874.
- 5. Ghazaryan K., Movsesyan H., Ghazaryan N., Amanda B. Copper phytoremediation potential of wild plant species growing in the mine polluted areas of Armenia // Elsevier Ltd. All rights reserved. Environmental Pollution. 2019. Vol. 249. P. 491–501. DOI: 10.1016/j.envpol.2019.03.070.
- 6. Гололобова А.Г., Легостаева Я.Б. Влияние горнодобывающей и перерабатывающей деятельности на содержание тяжелых металлов и микроэлементов в мерэлотных почвах // Геология и минерально-сырьевые ресурсы северо-востока России: материалы XI Всероссийской научно-практической конференции. Якутск, 2021. С. 367–370. DOI: 10.52994/9785751331399 2021 97.
- 7. Qianqi Y., Zhiyuan L., Xiaoning L., Qiannan D., Lei H., Jun B. A review of soil heavy metal pollution from industrial and

- agricultural regions in China: Pollution and risk assessment // Science of the Total Environment. 2018. Vol. 642. P. 690–700. DOI: 10.1016/j.scitotenv.2018.06.068.
- 8. Zhou Y., Wang L., Xiao T., Chen Y., Beiyuan J., She J., Zhou Y., Yin M., Liu J., Liu Y., Wang Y., Wang J. Legacy of multiple heavy metal (loid)s contamination and ecological risks in farmland soils from a historical artisanal zinc smelting area // Science of the Total Environment. 2020. Vol. 720. P. 1–9. DOI: 10.1016/j.scitotenv.2020.137541.
- 9. Barsova N., Yakimenko O., Tolpeshta I., Motuzova G. Current state and dynamics of heavy metal soil pollution in Russian Federation A review // Environmental Pollution. 2019. Vol. 249. P. 200–207. DOI: 10.1016/j.envpol.2019.03.020.
- 10. Yang H., Wang F., Yu J., Huang K., Zhang H., Fu Z. An improved weighted index for the assessment of heavy metal pollution in soils in Zhejiang, China // Environmental Research. 2021. 192 110246. P. 1–12. DOI: 10.1016/j.envres.2020.110246.
- 11. Qu Ch., Albanese S., Lima A., Hope D., Pond P., Fortelli A., Romano N., Cerino P., Pizzolante A., De Vivo B. The occurrence of OCPs, PCBs, and PAHs in the soil, air, and bulk deposition of the Naples metropolitan area, southern Italy: Implications for sources and environmental processes // Environment International. 2019. Vol. 124. P. 89–97. DOI: 10.1016/j. envint.2018.12.031.
- 12. Zhu F., Zhu Ch., Wang Ch., Gu Ch. Occurrence and Ecological Impacts of Microplastics inSoil Systems: A Review // Bulletin of Environmental Contamination and Toxicology. 2019. Vol. 102. P. 741–749. DOI: 10.1007/s00128-019-02623-z.
- 13. Zhao K., Zhang L., Dong J., Wua J., Yec Z., Zhaod W., Dingd L., Fu W. Risk assessment, spatial patterns and source apportionment of soil heavy metals in a typical Chinese hickory plantation region of southeastern China // Geoderma. 2020. Vol. 360. № 114011. P. 1–11. DOI: 10.1016/j.geoderma.2019.114011.
- 14. Antoniadis V., Golia E.E., LiubYu, Wang Sh., Shaheen Sh., Rinklebe J. Soil and maize contamination by trace elements and associated health risk assessment in the industrial area of Volos, Greece // Environment International. 2019. Vol. 24. P. 79–88. DOI: 10.1016/j.envint.2018.12.053.
- 15. Chen R., Chen H., Song L., Yao Z., Meng F., Teng Ya. Characterization and source apportionment of heavy metals in the sediments of Lake Tai (China) and its surrounding soils // Science of the Total Environment. 2019. Vol. 694. 133819. P. 1–11. DOI: 10.1016/j.scitotenv.2019.133819.
- 16. Kabir Z., Khan I. Environmental impact assessment of waste to energy projects in developing countries: General guidelines in the context of Bangladesh // Sustainable Energy Technologies and Assessments. 2020. Vol. 37. № 100619. P. 1–13. DOI: 10.1016/j.seta.2019.100619.